Problem 1 Man bestimme die Taylor-Reihe de... [FREE SOLUTION] (2024)

Get started for free

Log In Start studying!

Get started for free Log out

Chapter 22: Problem 1

Man bestimme die Taylor-Reihe der Funktion \(x \longmapsto x^{a}\) mitEntwicklungspunkt \(a \in \mathbb{R}_{+}^{*}\)

Short Answer

Expert verified

The Taylor series for the function \(f(x)=x^{a}\) around the point \(a\) is \[f(x) = a^{a} + \sum_{n=1}^{\infty} \frac{(a)_n (x-a)^n}{n!}\] where (a)_n denotes the falling factorial of \(a\).

Step by step solution

01

Root Selection

We first need to decide which root we will use to expand the power series around. Since the problem specifically mentions \(a \in \mathbb{R}_{+}^{*}\), that means the root will be the point \(a\).

02

Taylor Series Expansion

The general definition of the Taylor series for a function \(f(x)\) about the point \(a\) is: \[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^{2}}{2} + \frac{f'''(a)(x-a)^3}{3!} + \ldots\] We now need to apply this formula to our function \(f(x) = x^{a}\) and use our development point \(a\).

03

Calculating Derivatives

The derivative of \(f(x) = x^{a}\) is \(f'(x) = a * x^{a-1}\), the second derivative is \(f''(x) = a * (a-1) * x^{a-2}\), and, generally, the nth derivative is given by \(f^{(n)}(x) = a * (a-1) * \ldots * (a-n+1) * x^{a-n}\).

04

Substituting the Derivatives

Substituting these derivatives into the expansion, we find: \[f(x) = a^{a} + a * a^{a-1} * (x-a) + \frac{a * (a-1) * a^{a-2} * (x-a)^{2}}{2} + \frac{a * (a-1) * (a-2) * a^{a-3} * (x-a)^3}{3!} + \ldots\]

05

Simplifying the Expansion

Each term can be simplified by recognising that the numerator of the fraction in each term forms a falling factorial, while the denominator is a rising factorial. Thus, the series simplifies to: \[f(x) = a^{a} + \sum_{n=1}^{\infty} \frac{(a)_n (x-a)^n}{n!}\] where \((a)_n\) denotes the falling factorial of \(a\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Problem 1 Man bestimme die Taylor-Reihe de... [FREE SOLUTION] (3)

Most popular questions from this chapter

Aufgabe \(22 \mathbf{G}^{*}\). Man beweise die Funktionalgleichung des Arcus-Tangens: Für \(x, y \in \mathbb{R}\) mit \(|\arctan x+\arctan y|<\frac{\pi}{2}\)gilt $$ \arctan x+\arctan y=\arctan \frac{x+y}{1-x y} $$ Man folgere hieraus die,,Machinsche Formel" $$ \frac{\pi}{4}=4 \arctan \frac{1}{5}-\arctan \frac{1}{239} $$ und die Reihenentwicklung $$ \frac{\pi}{4}=\frac{4}{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2k+1}\left(\frac{1}{5}\right)^{2 k}-\frac{1}{239} \sum_{k=0}^{\infty}\frac{(-1)^{k}}{2 k+1}\left(\frac{1}{239}\right)^{2 k} $$ Welche Glieder muss man berücksichtigen, um \(\pi\) mit einer Genauigkeit von\(10^{-12}\) zu berechnen?. Sei \(p\) eine natürliche Zahl mit \(1 \leq p \leq n+1\). Man beweise für dasRestglied \(R_{n+1}\) der Taylorschen Formel (An. 1, \(\S 22\), Satz 1): Es gibtein \xi zwischen \(a\) und \(x\), so dass $$ R_{n+1}(x)=\frac{f^{(n+1)}(\xi)}{p \cdot n !}(x-\xi)^{n+1-p}(x-a)^{p} $$ (Dies ist das sogenannte Schlömilchsche Restglied.)Man bestimme die Taylor-Reihen der Funktionen sin und cos mit einem beliebigenEntwicklungspunkt \(a \in \mathbb{R}\).Man berechne den Anfang der Taylor-Reihe der Funktion \(f:]-2,2[\rightarrow\mathbb{R}\) $$ f(x):=\frac{\sin x}{2+x} $$ mit Entwicklungspunkt 0 bis einschlieBlich des Gliedes 5 . Ordnung. Aufgabe 22 D. Durch Integration der Taylor-Reihe der Ableitung von \(\arcsin:]-1,1[\longrightarrow \mathbb{R}\)Aufgabe \(22 \mathrm{I}^{*}\). Man zeige: Die Taylor-Entwicklung der Funktion\(\frac{1}{\cos x}\) um den Nullpunkt hat die Gestalt $$ \frac{1}{\cos x}=\sum_{k=0}^{\infty} \frac{E_{2 k}}{(2 k) !} x^{2 k} $$ mit positiven ganzen Zahlen \(E_{2 k}\). Man berechne \(E_{0}, E_{2}, E_{4}, \ldots, E_{10}\)
See all solutions

Recommended explanations on Math Textbooks

Probability and Statistics

Read Explanation

Discrete Mathematics

Read Explanation

Calculus

Read Explanation

Geometry

Read Explanation

Theoretical and Mathematical Physics

Read Explanation

Statistics

Read Explanation
View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept

Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.

Necessary

Always Enabled

Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.

Non-necessary

Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.

Problem 1 Man bestimme die Taylor-Reihe de... [FREE SOLUTION] (2024)

References

Top Articles
Latest Posts
Article information

Author: Van Hayes

Last Updated:

Views: 6339

Rating: 4.6 / 5 (66 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Van Hayes

Birthday: 1994-06-07

Address: 2004 Kling Rapid, New Destiny, MT 64658-2367

Phone: +512425013758

Job: National Farming Director

Hobby: Reading, Polo, Genealogy, amateur radio, Scouting, Stand-up comedy, Cryptography

Introduction: My name is Van Hayes, I am a thankful, friendly, smiling, calm, powerful, fine, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.